| 1234567891011121314151617181920212223 |
- import random
- import tensorflow as tf
- model = tf.keras.Sequential([
- tf.keras.layers.Dense(100, activation='relu', input_shape=(2,)),
- tf.keras.layers.Dense(100, activation='relu'),
- tf.keras.layers.Dense(1)
- ])
- model.compile(optimizer='adam', loss='mean_squared_error')
- speeds = list(map(lambda x: random.randint(1, 100), range(4000)))
- distances = list(map(lambda x: random.randint(1, 100), range(4000)))
- times = list(map(lambda x: speeds[x] / distances[x], range(4000)))
- # times = list(map(lambda x: (distances[x] / (int(speeds[x]) * 1.852)) * 60, range(4000)))
- # print(speeds[0], distances[0], times[0])
- model.fit(list(zip(speeds, distances)), times, epochs=800)
- predicted_time = model.predict([[200, 100]])
- print("Predicted time:", round(float(predicted_time[0])))
|