ml_time.py 784 B

1234567891011121314151617181920212223
  1. import random
  2. import tensorflow as tf
  3. model = tf.keras.Sequential([
  4. tf.keras.layers.Dense(100, activation='relu', input_shape=(2,)),
  5. tf.keras.layers.Dense(100, activation='relu'),
  6. tf.keras.layers.Dense(1)
  7. ])
  8. model.compile(optimizer='adam', loss='mean_squared_error')
  9. speeds = list(map(lambda x: random.randint(1, 100), range(4000)))
  10. distances = list(map(lambda x: random.randint(1, 100), range(4000)))
  11. times = list(map(lambda x: speeds[x] / distances[x], range(4000)))
  12. # times = list(map(lambda x: (distances[x] / (int(speeds[x]) * 1.852)) * 60, range(4000)))
  13. # print(speeds[0], distances[0], times[0])
  14. model.fit(list(zip(speeds, distances)), times, epochs=800)
  15. predicted_time = model.predict([[200, 100]])
  16. print("Predicted time:", round(float(predicted_time[0])))