import random import tensorflow as tf model = tf.keras.Sequential([ tf.keras.layers.Dense(100, activation='relu', input_shape=(2,)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(1) ]) model.compile(optimizer='adam', loss='mean_squared_error') speeds = list(map(lambda x: random.randint(1, 100), range(4000))) distances = list(map(lambda x: random.randint(1, 100), range(4000))) times = list(map(lambda x: speeds[x] / distances[x], range(4000))) # times = list(map(lambda x: (distances[x] / (int(speeds[x]) * 1.852)) * 60, range(4000))) # print(speeds[0], distances[0], times[0]) model.fit(list(zip(speeds, distances)), times, epochs=800) predicted_time = model.predict([[200, 100]]) print("Predicted time:", round(float(predicted_time[0])))